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Abstract

Analytical solutions of functionally graded material (FGM) shells with embedded magnetostrictive layers are pre-
sented in this study. These magnetostrictive layers are used for the vibration suppression of the functionally graded
shells. The first-order shear deformation shell theory (FSDT) is employed to study the vibration suppression character-
istics. The exact solution for the FGM shell with simply supported boundary conditions is based on the Navier solution
procedure. Negative velocity feedback control is used. The parametric effect of the location of the magnetostrictive lay-
ers, material properties, and control parameters on the suppression effect are investigated in detail. It is found that (i)
the shortest vibration suppression time is achieved by placing the actuating layers farthest from the neutral axis, (ii) the
use of thinner smart material layers leads to better vibration attenuation characteristics, and, (iii) the vibration suppres-
sion time is longer for a smaller value of the feedback control coefficient.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of materials have been used in sensor/actuator applications. Piezoelectric materials, magne-
tostrictive materials, shape memory alloys, and electro-rheological fluids have all been integrated with
structures to make smart structures. Among these materials piezoelectric, electrostrictive and magnetostric-
tive materials have the capability to serve as both sensors and actuators. Piezoelectric materials exhibit a
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Nomenclature

o3, A3, B3, B3 magnetostrictive coefficients integrated over the shell thickness
B normalized %3,

o, f positive real number

oy, op  surface metrics

€1, &, &4, €5, & total strains

&), €9, &9, &2, &0 strains from classical shell theory

&y, &, { orthogonal curvilinear co-ordinates

K1, K2, K¢ FSDT strain correction factors

A eigenvalue

Ao arbitrary constant

¢1, ¢» rotational displacements

vi, vo  Poisson’s ratios of material 1 and material 2

Vegm Poisson’s ratio of FGM material 1 and material 2

Vin Poisson’s ratio of magnetostrictive material
p density of kth layer

Pm density of magnetostrictive material

o1, 03, G4, 05, O¢ Stress components

Wq damping frequency

a length of the shell

b breadth of the shell

b. coil width

(1) control gain

dA;, dA, elementary areas across the thickness of the shell
ds square of the distance on the middle surface
ds square of the distance

egl?, egg), eglg magnetostrictive material properties of kth layer

g1, &2 tangents to ¢y, &

h thickness of the shell

ke magnetostrictive coil constant

m, my, My, n Positive integers

ne number of coil turns

nm number of constituent materials in the FGM

q uniformly distributed load in the transverse direction
r position vector on the middle surface

e coil radius

ty normalized value of

ts suppression time ratio

uy, u», u3 displacements at the middle surface
uy, uy, uy displacements along &;, &,

z thickness co-ordinate

[P contribution due to classical shell theory
™ contribution due to magnetostrictive layer
Ay, By, Dy; stiffness coefficients of FGM material

Co constant depends on R; and R,
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E\, E; Young’s modulus of material 1 and material 2
Erom Young’s modulus of FGM material

E. Young’s modulus of magnetostrictive material
Gtem  shear modulus of FGM material

H magnetic field intensity

1 coil current intensity

I, I,, Is; moment of inertia

Kg shear correction factor

Ly, L,, L; Lame’ coefficients
My, M>, Mg moments applied on the edges of the shell
M moments due to the magnetostrictive layer

N number of layers assumed for computation
Ni, N,, Ng forces applied on the edges of the shell
NM forces due to the magnetostrictive layer

P_,, Py, P>, P; FGM material constants
P,y material property of the FGM material
P; material properties of the constituents of the FGM material
01, 0> shear forces applied on the edges of the shell
(k)

0;; stiffness coefficients of kth layer

R position vector of arbitrary point
R;, R, principal radii of curvature of the middle surface of the shell
R, positive real number

i Cy, My; coeflicients of stiffness, damping and mass matrices
i coeflicients of solution matrix
temperature
volume fraction of ceramic material
volume fraction of the constituents of FGM material
volume fraction of metal material
ax ~Mmaximum amplitude in transverse direction
transverse location of magnetostrictive layer in the FGM shell

%]
~

NESSS

linear relationship between the electric field and strains for low field values (up to 100 V/mm). This relation-
ship is nonlinear for large fields, and the material exhibits hysteresis (Uchino, 1986). Further, piezoelectric
materials show dielectric aging and hence lack reproducibility of strains, i.e. a drift from zero state of strain
is observed under cyclic electric field applications (Cross and Jang, 1988).

Crawley and Luis (1987) demonstrated the feasibility of using piezoelectric actuators for free vibration
reduction of a cantilever beam. Baz et al. (1990) investigated vibration control using shape memory alloy
and carried out their characterization. Choi et al. (1990) demonstrated the vibration reduction effects of
electro-rheological fluid actuators in a composite beam. An ideal actuator, for distributed embedded appli-
cation, should have high energy density, negligible weight, and point excitation with a wide frequency band-
width. Terfenol-D, a magnetostrictive material, has the characteristics of being able to produce strains up
to 2000 and an energy density as high as 0.0025Jm > in response to a magnetic field. Goodfriend and
Shoop (1992) reviewed the material properties of Terfenol-D with regard to its use in vibration isolation.
Anjanappa and Bi (1994) investigated the feasibility of using embedded magnetostrictive mini actuators for
smart structure applications, such as vibration suppression of beams. Bryant et al. (1993) presented exper-
imental results of a magnetostrictive Terfenol-D rod used in dual capacity of passive structural support
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element and an active vibration control actuator. Krishna Murty et al. (1997) proposed magnetostrictive
actuators that take advantage of ease with which the actuators can be embedded, and the use of remotely
excitation capability of magnetostrictive particle as new actuators for smart structures. This work is limited
to flexible beam theory.

Friedmann et al. (2001) used magnetostrictive material Terfenol-D in high speed helicopter rotors and
studied the vibration reduction characteristics. Vibration and shape control of flexible structures is achieved
with the help of actuators and a control law. Response of FGM shells are also studied by He et al. (2002),
Woo and Meguid (2001), Pradhan et al. (2000) and Loy et al. (1999). Many modern techniques have been
developed in recent years to meet the challenge of designing controllers that suit the function under re-
quired conditions. There have been a number of studies on vibration control of flexible structures using
magnetostrictive materials (Anjanappa and Bi, 1994; Bryant et al., 1993; Krishna Murty et al., 1997;
Giurgiutiu et al., 2001; Pradhan et al., 2001). Although there have been important research efforts devoted
to characterizing the properties of Terfelon-D material, fundamental information about variation in elasto-
magnetic material properties in a functionally graded shell is not available.

In the present study vibration control of functionally graded shells are studied using the first-order shear
deformation theory. Exact solutions are developed for simply supported doubly curved functionally graded
shells with magnetostrictive layers. This closed form solution exists for FGM shells where the coefficients
Ais, Azs, Bre, Bas, Dis, Das, Ags are equal to zero. A simple negative velocity feedback control is used to
actively control the dynamic response of the structure through a closed loop control. Numerical results of
vibration suppression effect for various locations of the magnetostrictive layers, material properties, and
control parameters are presented.

2. Theoretical formulation
2.1. Kinematic description

Fig. 1a contains a differential element of a doubly curved shell element with constant curvatures along
coordinate directions &; and &, (Reddy, 1984a). &, &, and { denote the orthogonal curvilinear coordinates
such that ¢, and &, curves are the lines of curvature on the middle surface ({ = 0). Thus, for the doubly
curved shell panel considered here, the lines of the principal curvature coincide with the coordinate lines.
The values of the principal radii of curvature of the middle surface are denoted by R; and R,. The position
vector of a point (&, &5,0) on the middle surface is denoted by r, and the position of an arbitrary point
(&1,6,,0) 1s denoted by R (see Fig. 1b). The square of the distance ds between points (&, &,,0) and
(&1 +déy, &+ dé,,0) is determined by

(ds)* = dr - dr = o2(d¢,)” + 02(d&,)? (1)
in which dr = g;d¢; + g,d¢,, the vectors g; and g5 (g, = aa—g') are tangents to the & and &, coordinate lines
and o, and o, are the surface metrics

0= 8 B=8 & (2)
The square of the distance dS between (&1, &,,0) and (& + d&y, & + dé,, {4 d{) is given by
(dS)* = dR - dR = L}(d&,)* + L3(d&,)* + L3(d0)* (3)
in which dR = (g%)dél + (%)déz + (%—'g)d( and L, L,, and L; are the Lame’ coefficients (Reddy, 1984a)

L10€1<1+1§1>, L20!2<1+RCZ>7 L3:1 (4)



S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488 2469

Fig. 1. Geometry and stress resultants of doubly curved shell.

From Fig. 1a, the elements of area of the cross sections are
d4, = Liddl = o (1 +R£> dé, d¢
1

Ay = Lrdé df = a2<1 +R£2> d& dt
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Next, we introduce the stress resultants acting on a shell element. For example, N; denotes the tensile
force measured per unit length along a &, coordinate line on a cross section perpendicular to a ¢; coordinate
line (see Fig. 1c). The total tensile force on the differential element in the &; direction is Na,dé,. This force
is equal to the integral o;dA, over the thickness

B2
Nlﬁ%zdfzz/ 01d4, (6)
ny

where / the total thickness of the shell ({ = —//2 and { = /2 denotes the bottom and top surface of the
shell). Using Eq. (5) we can write

h/2 C
Nl—/_h/261<1+R2)d£ (7)

Similarly, the remaining stress resultants per unit length can be defined. The complete set of expression for
forces and moments are written as (Reddy, 1984a)

o1 (1 —s—R%)
Ny 02(1 +%)
N> 06(1 +’;_2)
xz 06(1 +R1)
0, _ /h/2 65(1 +Ri) d ®)
0, 2 0—4(1 + R—l)
M,
v o (1+5)
AA;[: C62<1 —l—R%)

Ca6(1 —|—R%)

C0'6<1 —|—R%)

For shallow shells, one can neglect {/R; and {/R, terms as in a plate theory. The shear forces Q; are often
corrected by introducing shear correction factor Kg:

w2 | os( 14+
{Ql } :Ks/ ( Rz) de )
0, -2 | g (1 + Ril)

2.2. Displacement field

We assume the following form of the displacement field that is consistent with the assumptions of a
moderately thick shell or Sanders shell theory (Reddy, 1984b).

L
u (&,6,01) = a—iul(fla &, t) + L&, 800)

L
(&1,8,01) = 0721"2(513 &, t) +{hy(&y,800) (10)
’7{3(51a éZa(at) = u3(éla iZ?t)
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in which (&,u,,u3) are the displacements of a point (&;,¢&5,() along the (&1,&5,{) coordinates; and
(uy,us,u3) = displacements of a point (&1, &,,0) on the mid surface of the shell. Substituting Eq. (10) into
strain—displacement relations for the first-order shear deformation theory, one obtains

& &l K
& & Ky
e p =48 p+(q 0 (11)
&5 &) 0
&6 & K
where
P(l) “1 22 + "?_1143
! Lt
4= i%+%—F "
% e T 91— g
&6 1y 10y
o 0 1w 08
10 10
" zfl_lai;l’ = o2 6?22 (13)
1 03¢, 1 3¢ 1 du, 1 Ouy
T weg T mog (Rz 1> (oq % w a@)
and (¢4, ¢,) are rotations of a transverse normal line about the &, and &; coordinate axes, respectively.
Ou; Ou;
d)l:_a_fl’ ¢2:_6—52 (14)

2.3. Equations of motion

The displacement field (10) can be used to derive the governing equations of the first-order shear defor-
mation theory of shells. By means of Hamilton’s principle (or the dynamic version of the principle of virtual
displacements), one can obtain the following governing equations of motion in terms of the displacements
and stress resultants in the Cartesian coordinate system (xy, X, x3 = {) (assuming that Ny, = N,; = Ng and
My, = My = Ms):

0N, 0 0u I3 62(151
N T (Ng+ CoM J ) I
o o, et CoMe) + (1+ >62+(1+R1> o
d ON o 15\ &
o (Ve — COM6)+6—2+%= (11 +2 ) aZZ+ (11 +R3) aﬁz
1 2%) 2
00, 00, Ny N, %us
=2 B~ A (S T =7, = 15
aXI axz Rl + R2 +q ! atz ( )
oM, | OM B qﬁl I3\ 9
o T, Qb T\t )
6M6 aMz 62¢2 13 0
o T, @ by TR )
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where
1/1 1 1 11 XL e :
Co==(——-—), —=—= (=12, L= ®ytde (i=1,2,3 16
) <R1 Rz)’ ox; o; 0&; (=12 ; L PR i=123) (19
and p'® is the density of the kth layer. N is the number of layers assumed for computation.

2.4. Constitutive relations

Suppose that the shell is composed of N functionally graded layers. The stress—strain relations of the kth
layer, whether structural layer or actuating/sensing layer, in the shell coordinate system are given as

o (k) 0, 0, O 0 0 1% & e (k)
() le QZZ 0 0 0 &) €3
04 = 0 0 Q44 0 0 &4 — é’ 0 H (17)
[ 0 0 0 st 0 &s 0
(o 0 0 0 O Q66 86 €36
where QE/’Q are the stiffnesses of kth layer and
o Efgm o Vfngfgm o
Qll_l_v%gmv 12_1_v%gm7 Q22_Q11 (18)

Oy = Oss = Ogs = Gfgm

The superscript k on Q;; as well as on the engineering constants Ep,p,, Vgem and so on are omitted for brevity.
In Eq. (17), H denotes the intensity of the magnetic field. H is applied normal to the thickness of the shell.
e;; are the magnetostrictive material coefficients.

2.5. Feedback control

A velocity feedback control is used in the present study. In the velocity feed back control, the magnetic
field intensity H is expressed in terms of coil current (&4, &5, 1)

H(615527t) :kcl(élvfbt) (19)
Current [ is related to the transverse velocity by
au%(él ) 527 t)

1(&1,&,1) = c(t) (20)

ot

where k. is the magnetic coil constant and is related to the number of coil turns 7, coil width b, and coil
radius r,

Ne

\/ B+ 4r?

The parameter ¢(¢) is known as the control gain.

2.6. Functionally graded material

FGM are basically particles in matrix composite materials, which are made by mixing two or more dif-
ferent materials. Most of the FGM are being used in high temperature environment and their material



S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488 2473

properties are temperature dependent. A typical material property P; can be expressed as a function of the
environment temperature 7(K)

Pi=Py(P T~ + 1+ P\T + P,T? + P;T?) (22)

where, Py, P_y, Py, P, and P; are temperature coefficients and are unique to the constituent materials. The
material properties Pry, of FGM are controlled by volume fractions Vj; and individual material properties
P; of the constituent materials.

nm

Pign =Y _PiVy; (23)
i=1

In the present case two different materials are particle mixed to form the FGM material. A schematic of
FGM shell with magnetostrictive layers is shown in Fig. 2a and b. In Fig. 2a it is shown that two layers of
magnetostrictive materials are placed symmetrically away from the neutral plane of the FGM shell. A
zoomed view of section AA of Fig. 2a is shown in Fig. 2b. Assuming there are no defects like voids and
foreign particles in the FGM material, sum of the volume fractions of all the constituent materials is unity.

im: Vi =1 (24)
i=1

For example, metal and ceramic materials (nm = 2) are mixed to form the FGM shell. Average volume
fraction of the metal and ceramic materials are calculated by simple integration of the distribution over

Magnetostrictive layers Neutral plane

(a)

Nickel

<4+—— Magnetostrictive layer

Zm

Neutral plane

/V

Magnetostrictive layer
FGM1

4——  Stainless Steel

(b)

Fig. 2. Functionally graded shell with embedded magnetostrictive layers.
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a domain. Different problems of interest have different expressions of volume fractions. For bending prob-
lems of plates and shells the volume fractions of metal (V) and ceramic (¥,) materials are defined as

V= (h ;h22> ) (25)

Ve=1—=Vy
where z is the thickness co-ordinate (—/4/2 < z < 1/2) and h represents the shell thickness. R, is the power
law exponent (0 < R, < o0). Here volume fraction of the metal material (V) varies from 100% to 0% as z
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Fig. 3. Volume fractions of metal and ceramic materials in the FGM shell.
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Table 1
Material properties of FGM constituent materials
Stainless Steel Nickel Aluminum Oxide
Density (kgm ™) 7900 8909 3970
Coefficient E (Nm™2) v E(Nm™) v E(Nm™?) v
Py 201.04E09 0.3262 244.27E09 0.2882 349.55E09 0.260
P, 0 0 0 0 0 0
Py 3.079E—04 —2.002E—04 —1.371E-03 1.133E-04 —3.853E-04 0
P, —6.534E-07 3.797E-07 1.214E—06 0 4.027E—07 0
P3 0 0 —3.681E-10 0 —1.673E-10 0

varies from —A/2 to i/2. Similarly volume fraction of the ceramic material (¥,) varies from 0% to 100% as z
varies from —//2 to h/2. For various R, values the average volume fractions of metal (V) and ceramic (V)
materials are depicted in Fig. 3a and b, respectively. The Young’s modulus and Poisson’s ratio of a FGM
shell made up of two different materials are expressed as

2z + m\ ™

Efgm(EzEl)( T > + E, (26)
2z + ™

Vfgm—(V2—V1)< 2h ) +V1 (27)

E\, E; and Eggy, are the Young’s moduli of the constituent materials and the FGM material, respectively. vy,
vy and ve are the Poisson’s ratios of the constituent materials and the FGM material, respectively. From
these equations ((26) and (27)), it is interesting to note that at z = —//2, FGM material properties are same
as those of material 1. While at z = 4/2, FGM material properties are same as those of material 2. Thus, the
FGM material properties vary smoothly across thickness, from material 1 at the inner surface to material 2
at the outer surface.

Two different FGM materials are considered for the present study viz. FGM1 and FGM2. FGM1 con-
sists of Stainless Steel and Nickel materials (Fig. 2b). FGM2 consists of Nickel and Aluminum Oxide mate-
rials. Material properties of Stainless Steel, Nickel materials and Aluminum Oxide are listed in Table 1. In
the present work, we have used the room temperature to calculate the material properties of the FGM
shells.

3. Analytical solution
Analytical solutions of the set of equations (15) can be obtained for simply supported functionally
graded shell panels. Towards using the Navier type solution, first we write the governing equations in terms

of the displacements. Using the constitutive equations, the layer constitutive equations can be expressed as
(Reddy, 1984a)

(it =L ol {0} =

O\ _ o [Au As] || [ O
{Q1} s th Ass}{gg} {Qllvl @)
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where the laminate stiffness coefficients (A4, B, D;;) are defined by

Ay = ZQ§f)(€k+1 —4), ij=12,6
k

=1
IS W), oL
Bif = 5 ZQ(/ (Ck+1 - gk)? L] = 15256
k? (30)
1 .
D=3 0P~ ), =126
k=1

N
Ai] = Z Ql(f)(ék+l - Ck)v l?] = 4» 5

and the magnetostrictive stress resultants {N™} and {M™} are defined as

M N G (e N G [ e ) oA 0
L=y / YAH A=k S / . ﬂdg_ e (31)
N, et exn - I exn of3 | O

k=mymy,...

MM N Gt [ e a8} 0 B d
wi= 2 / " beHcar = ek, / D Rrar=4 A ()
M2 k=my.ma,... 7k €3 k=my ,my,. €32 e%32 ot
where
Ay=cke Y el —G), i=3 j=12
k=mymy,...
I Y (33)
Bij :ECkc Z e (G — &)y i=3 j=12
k=my,my,...

and my, m,,... denote the layer numbers of the magnetostrictive (or any actuating/sensing) layers. The
equations of motion (15) can be expressed in terms of displacements (uy,us, u3, ¢, p>) by substituting for
the force and moment resultants from Egs. (28) and (29). For homogeneous laminates, the equations of
motion (15) take the following form (Reddy, 1984a)

51/{1:

uy 1 dus Pu, 1 dus Pu,  uy 0%, ¢,
A Ap (=22 2B 4y B B
(a > TR 1) + 12<6x16x2+R2 ax1> * 16(ax2 6x16x2> T T

62¢2 0%, Pu, Oy u; 1 Ous uy 1 Ous

B |—= —Co| =— — ——— Ag| m——+— — | + Ay | —+— —

* ‘6[6 > ¥ anon CO(@x% 6x18x2>] + 16(6x16x2+R1 axz) i 26(@ R ax2>
C 62u2

Puy,  uy 0’ P, 0%, ¢, ¢, 0%uy
A —')+B B B -
Ao (axlaxz+ 6x2> T e, S g T {axlaxﬁ o2 0<6x16x2 6x2>]

62143 1 6143 up aul
KsA — —— | +K4 — I +2
””axaﬁ 1{ s 44(¢1+61 R)+ s 45(¢2 axz R)] <1+ ) or

]3 az¢1
1
( : +R1> or

=0 (34)
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51/{2:

O*u; 1 Ous O*u; 1 Ous uy  uy 0’ o,
T )y oo [ 22 B B
12<6x16x2+R1 axz) + 22(@ TR o ) A <6x16x2+ 6x2> o T

¢, ¢, u, Oy *uy 1 dus Pu, 1 Ous
B —-C A =5+ — =— ) + Ao | ———
+ 5 {@claxz + ox3 0 (6x16x2 ox3 )} + s ( ox? * Ry 6x1> + A2 (ax,axz R R, 6x1>

uy  Quy o’ p, 0%, o*p, ¢, uy  Quy
Ags | — B B B — —_— —
+ "’6<ax§ +6x16x2> T T e, 6"’{@;& * anon C"(ax% 6x16x2>}

us 1 u3 us U O us
oty L K ‘ KA : 1, +2
326x26t+R2[ séhas <¢1 T R ) + s 55<¢2 s Rzﬂ (‘+ ) o

5143:

O'us  0¢,  Ou O'us 0,  Ou o'us  0¢,  Ou
KsAus | —— + =22 — KsAss| —— 4+ =L — KsAu | —>— + =22 —
S5 <6x16xz + 6x1 R26x1> + Rsdss (azx] + axl Rlaxl) +Asdu (62)(2 + 6x2 Rz@Xz)

*u; P,  Ouy 1 ouy  us ur  us Our  duy
+KSA45 <6x16x2 +6_xz_R16x2) R1 {A” (8 X1 + +A12 6 %) + Al6 6 X1 T ax

30, 396, o, 00, ouy  Buy dus
B B —
P, TP e Tag  C\an T/ | T

1 6u1 auz us au2 6u1 6(]5 6(1)2
——q4; + 4 Ax| — + B By —
R { <6 X1 + > 2 <6 %) + ) + % <6X1 GXQ> 2%, Ox X1 thn 6x1

d d d d dus o
+326[¢2+ﬂ—co(£—ﬂ>} A3 —— } Q*Ilﬁ

\_/

+ Bii5—

axl axz axl axz ot
-0 (36)

5¢11

*u;  Ous Pu, s Pu, 'y 0%, 0%,
B“(@_x%—'_R]@x]) +Bu(ax16x2+R26x1) +B“(a z t 3x0x ) +tDugr Dy as

%, ', Pu,  u ou Ous u,  Ous
D — —_— — Big| ———— B
+ e |: 6x% + 6x16x2 CO ( axf 6x16xz)] +5is <ax16x2 + R16X2> + 5 < Rz@Xz)
62
-+ Dy ¢s

Pu,  Ouy azqs1 0*p, O, azuz Pu
W) Pyt P e a0, ﬂ

B __Z
+ Bes <6x1 oxy + ox3 Ox0x;  Ox3 Ox,0xy ze
Ous dus O%us a ¢ Ou,
+ KsAys (6 + ¢, — R2> + KsA55< + ¢ — > RZE wo e 1, + T
—0 (37)

+D66|:



2478 S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488

5¢2:

uy Oy O*u, dus azuz O*u, 0%, 0%,
Bio[ L4 4 20 ) g, (e OB ) g D D
lé(axf +R16x1) + 26<6x16x2+R26x1> + 66(@ Tt )+ 52 % o ox

3¢, O, 1/1 1\ [Pu, u O%u, Ouz
+ D66 |: Gx% + axlaxz + 5 (R_z B R_1> (a—xf B 6X16X2>:| + 312 (6x16x2 + R]@)Cz)

62u2 6u3 621,{2 azul az¢] 62¢2
B (L2 Bo [ 42 D D
+ 22(ax§ +R26x2) + Bes (8x16x2+ 6x2) Ty s P

0*¢p, ¢, 1 u, Oy Ous us
— K<A _ =
+ D26 [6x16x2 + 6x§ *3 2 <R2 R > (6x16x2 6)(2 >:| + saa <6 X + ¢2 R2>

dus 0%us a b, I3\ 0%u,
KA —(nh+2) =2
s 45( +i - ) P 2oe T\t e

=0 (38)

Eqgs. (34)—(38) describe five second-order, nonlinear, partial differential equations in terms of the five gen-
eralized displacements. The simply supported boundary conditions for the first-order shear deformation
shell theory (FSDT) are

ui(x1,0,6) =0, wu(x,0,8) =0, u(0,x5,¢) =0, wuy(a,xp,1)=0

(nbl(xlaoat) :07 (rbl(xlabvt) :07 ¢2(07x27t) :07 ¢2(aax27t) :0 (39)

uy(x1,0,8) =0,  us(x2,0,8) =0, u3(0,x2,8) =0, ws(a,x2,1) =0

The boundary conditions in Eq. (39) are satisfied by the following expansions (Reddy, 1984a)

q(x1,%2,t) = Z 0,,,(2) sin ox; sin fix,

m,

3

o0
uy (x1,%2,1) = Z U . (£) cos ax; sin fixy

SN=

3

uz(xl,xz,t) = Z an(t) sin ouxy COSﬁXz

mn=1

3

00

u3(x1,x2,l‘) = Z Wmn(t) sin o Sil’lﬁxZ

mn=1

oo
¢1(X1,XZ, t) = Z X,,m(t) COS oxy sin ﬁX2

mpn=1

Dy (x1,x2,8) = Z Y, (t) sin oox; cos fx;

mn=1

where o = mn/a and B = nn/b.



S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488 2479

Substituting for Egs. (39) and (40) into Eqgs. (34)—(38) yields the equations
S S Sz Su Sis Ui 00 Cs 00 Upn
Sy Sn S Swu S Vo 00 Cs 00 V
Sy Sn Sn Su S W p+10 0 C3 0 0 W o
Su Sz Sz Sas Sss Xon 0 0 Cs 0O X
Ss1 Ss2 Ss3 Sss Sss Yo 0 0 Cs35 00 Yo
My 0 0 My O Upin 0
0 My 0 0 Mys|| V. 0
+1 0 0 Mz O 0 Wom ¢ =2 O (41)
My 0 0 My O X 0
0 My 0 0 M| |7, 0

where S, C;y and Mj; (i,j=1,2,...,5) are defined in Appendix A.

Here the magnetostrictive coefficients .o73;, .o73,, %3 and %5, are defined in Eq. (33). For vibration con-
trol, we assume the uniformly distributed transverse load ¢ = 0 and seek solution of the ordinary differen-
tial equations in Eq. (41) in the form

Upn(t) = Uge™,  Vou(t) = Vo™, Won(t) = Woe", Xou(t) = Xoe”,  Y,u(t) = Yoe (42)
Substituting Eq. (42) into Eq. (41), for a nontrivial solution we obtain the result
gll 512 §13 514 SIS
§21 §22 §23 §24 §25
331 §32 333 §34 335 =0 (43)
§41 542 §43 544 §45
ESI 552 §53 §54 §55

where
for i,j =1,2,3,4,5. This equation gives five sets of eigenvalues. The lowest one corresponds to the trans-
verse motion. The eigenvalue can be written as 1 = —/y + iwq, so that the damped motion is given by
| P . NTX| . NTX
u3(x1,%2, 1) = — e ' sin gt sin —— sin ——> (45)
wq a b

In arriving at the last solution, the following initial conditions are used:
ul(xl7x270) :0 1:!1()(1,)6'2,0) :O7 Mz(X1,xz,0) :Oa

i (x1,%2,0) = 0, u3(x1,x2,0) =0, it3(x1,%,0) = 1, (46)
(xlvx27 ) 7 ¢1(x1ﬂx270) = 07 ¢2(X17X2,0) = 07
¢2(X1,X27 )

4. Results and discussion

In the present work a theoretical analysis of a functionally graded material (FGM) shell, consisting of
layers of magnetostrictive material. The magnetostrictive material is assumed to impart vibration control
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through a velocity dependent feedback law that controls the current to the magnetic coils energizing the
magnetostrictive material. First-order shear deformation theory (FSDT) is used in the derivation. Numer-
ical simulation results are presented. Effect of various parameters on the vibration suppression time is stud-
ied. These parameters are (a) location of magnetostrictive layer from the neutral plane, (b) thickness of
magnetostrictive layer, (¢) higher modes of vibration, (d) material properties of magnetostrictive material
and (e) material properties of FGM material.

The FGM shell is considered to be of 1 m x 1 m dimension. Two different types of FGM shells (FGM1
and FGM2) are considered for the present study. FGM1 is made up of Stainless Steel and Nickel. FGM2 is
made up of Nickel and Aluminum Oxide. For most of the present work FGM1 is employed. In the present
work if it is not mentioned FGM2 means it is FGM1 shell. The material properties of constituent materials,
Stainless Steel, Nickel and Aluminum Oxide of the FGM shells are listed in Table 1. Two layers of mag-
netostrictive materials are placed symmetrically away from the neutral plane of the FGM shell. These layers
are shown in Fig. 2a. A zoomed view of section AA of Fig. 2a is shown in Fig. 2b. Magnetostrictive mate-
rial properties are considered to be

En =265GPa, vy, =0.0, p,=9250kgm=>, c(t)r. =10 (47)

The numerical values of various materials and structural constants based on different locations of mag-
netostrictive layers and FGM material properties are listed in Tables 2 and 3.

Table 2
Various coefficients of FGM1 (Stainless Steel-Nickel) shell
Zy/m Dy/Nm  Dip/Nm  Dg/Nm  Ayu/Nm™' Ii/kgm™! Likgm  —d/3 —B31 By
(10 (10%) (10 (10') (109 (1073 (107 (10%
0.0095 0.124 0.376 0.434 0.311 0.849 0.287 0.926 0.879 1.000
0.0085 0.132 0.401 0.460 0.311 0.849 0.286 0.926 0.787 0.895
0.0075 0.139 0.423 0.484 0.311 0.849 0.285 0.926 0.694 0.790
0.0065 0.145 0.442 0.505 0.311 0.849 0.284 0.926 0.601 0.684
0.0055 0.150 0.459 0.523 0.311 0.849 0.283 0.926 0.509 0.579
0.0045 0.155 0.473 0.538 0.311 0.849 0.282 0.926 0.416 0.473
0.0035 0.158 0.484 0.550 0.311 0.849 0.281 0.926 0.324 0.369
0.0025 0.161 0.492 0.558 0.311 0.849 0.280 0.926 0.231 0.263
0.0015 0.162 0.498 0.564 0.311 0.849 0.280 0.926 0.138 0.157
0.0005 0.163 0.501 0.567 0.311 0.849 0.280 0.926 0.046 0.052
Table 3
Various coefficients of FGM2 (Nickel-Aluminum Oxide) shell
Zn/m Dyi/Nm Di/Nm Dg/Nm Agp/Nm™' I/kgm™ L/kgm —/3 —%31 I
(10%) (10%) (10%) (10'%) (10%) (107 (10%) (10%)
0.0095 0.161 0.436 0.586 0.424 0.672 0.240 0.926 0.879 1.000
0.0085 0.171 0.465 0.625 0.424 0.672 0.235 0.926 0.787 0.895
0.0075 0.181 0.491 0.658 0.424 0.672 0.230 0.926 0.695 0.791
0.0065 0.189 0.514 0.688 0.424 0.672 0.226 0.926 0.602 0.685
0.0055 0.196 0.533 0.713 0.424 0.672 0.223 0.926 0.509 0.579
0.0045 0.202 0.549 0.735 0.424 0.672 0.220 0.926 0.417 0.474
0.0035 0.206 0.563 0.752 0.424 0.672 0.218 0.926 0.324 0.369
0.0025 0.210 0.573 0.764 0.424 0.672 0.216 0.926 0.231 0.263
0.0015 0.213 0.579 0.773 0.424 0.672 0.215 0.926 0.139 0.158

0.0005 0.213 0.582 0.777 0.424 0.672 0.215 0.926 0.046 0.052
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In this study, the vibration suppression time (z) is defined as the time required to reduce the uncontrolled
vibration amplitude to one-tenth of its initial amplitude. In the present numerical simulations the suppres-
sion time, thickness of the magnetostrictive layer are denoted by #, and h,,, respectively. In Fig. 2b, Z,
represents the distance between the location of the magnetostrictive layer and the neutral plane.

4.1. Effect of magnetostrictive layer location

Effect of location of magnetostrictive layers on the vibration suppression is studied. Fig. 2a and b show
the location of magnetostrictive layers in the FGM shells. Transverse deflection versus time for Z,, of
9.5mm, 7.5mm, 5.5mm and 3.5mm are plotted in Fig. 4a—d, respectively. For Z,, equals to 9.5mm Fig.
4a shows shortest suppression time () of 0.22s and for Z,,, equals to 3.5mm Fig. 4d shows longest suppres-
sion time () of 0.59s. From Fig. 4a—d, shortest suppression time is observed when the magnetostrictive
layers are placed farther away from the neutral plane. Similarly, from Fig. 4a—d one can observe that, long-
est suppression time occurs when the magnetostrictive layer is located closest to the neutral plane of the
shell.

Influence of the position of the magnetostrictive layers in the thickness direction from the neutral plane
of the shell on the damping of the vibration response are listed in Tables 4-7. In Tables 4-7, the value of 4
[see Eq. (36)] increases when the magnetostrictive layer is located farther away from the neutral axis,

Transverse deflection (m)

-0.002 ; ; ‘ ‘
0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 0.5
(@) Time (s) (b) Time (s)
€ 0.002 0.002
= 0.0015
2 0.001 -JEEE ! = 00015
& 0.0005 A = 0.001
< o T E
S 0.0005
§ -0.0005 ‘»-M\% %
S -0.001 Wi 3 0
g 0.0015 % 00005
= -0.002 4 ‘ ‘ ‘ ‘ l ¢ ™
0 0.2 0.4 0.6 0.8 1 ﬁ -0.001
(o . =
© Time (s) F 0.0015
-0.002 ‘ ‘ ‘ ‘ |
0 0.2 0.4 0.6 0.8 1
(d) Time (S)

Fig. 4. Comparison of uncontrolled (---) and controlled (—) motion at the midpoint of the FGM1 shell for various locations of
magnetostrictive layers, (a) Z,, = 9.5mm, (b) Z,, = 7.5mm, (¢) Z,;, = 5.5mm and (d) Z,, = 3.5mm.
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Table 4

Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates /,, = l mm

Zm (m) _A-O iwd Wmax (mm) ts (S) In
0.0095 10.212 752.04 1.329 0.228 0.053
0.0085 9.136 776.53 1.287 0.237 0.055
0.0075 8.061 799.46 1.230 0.277 0.064
0.0065 6.986 813.75 1.209 0.311 0.072
0.0055 5911 829.02 1.187 0.371 0.086
0.0045 4.836 845.02 1.163 0.448 0.104
0.0035 3.761 851.32 1.155 0.592 0.137
0.0025 2.686 858.55 1.146 0.825 0.191
0.0015 1.612 858.64 1.449 1.378 0.319
0.0005 0.537 859.11 1.153 4.311 1.000
Table 5

Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates /,, = 2mm

Zm (m) _20 iwd Wmax (mm) ts (S) In
0.0095 20.335 1517.54 0.644 0.117 0.057
0.0085 18.191 1546.49 0.634 0.129 0.063
0.0075 16.049 1588.18 0.619 0.144 0.070
0.0065 13.906 1631.74 0.603 0.165 0.081
0.0055 11.766 1639.97 0.601 0.192 0.093
0.0045 9.625 1686.26 0.583 0.230 0.112
0.0035 7.486 1709.38 0.575 0.295 0.143
0.0025 5.346 1724.01 0.570 0.402 0.195
0.0015 3.208 1712.36 0.576 0.675 0.328
0.0005 1.069 1720.58 0.575 2.058 1.000
Table 6

Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates /,, = 3mm

Zm (m) _20 j:wd Wmax (mm) Is (S) n
0.0095 30.285 2254.90 0.398 0.080 0.057
0.0085 27.086 2327.05 0.389 0.088 0.062
0.0075 23.891 2380.03 0.385 0.095 0.067
0.0065 20.699 2432.79 0.381 0.105 0.074
0.0055 17.509 2479.42 0.378 0.131 0.093
0.0045 14.323 2507.17 0.376 0.149 0.105
0.0035 11.138 2545.09 0.373 0.186 0.132
0.0025 7.954 2557.24 0.375 0.273 0.193
0.0015 4.773 2572.12 0.379 0.471 0.333
0.0005 1.591 2580.25 0.383 1.413 1.000

indicating faster vibration suppression. This is due to the larger bending moment created by actuating force
in the magnetostrictive layers. Further, it is observed that the damping parameter %5, and associated nor-
malized value of 4, increases as the magnetostrictive layers are moved away from the neutral plane. These
damping parameters are listed in Tables 2 and 3. These results agree qualitatively with the results presented
in Pradhan et al. (2001) and He et al. (2002).



S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488 2483

Table 7
Suppression time ratio for two different control gains and various locations of magnetostrictive layers in FGM1 laminates /,, = Smm
Zpn (M) C(t)re = 10* C(t)re = 10°

_;LO iwd Wmax (mm) ts (S) In _;LO iwd Wmax (mm) Is (S) In
0.0475 49.367 3707.84 0.252 0.049 0.051 4.936 3708.17 0.262 0.495 0.051
0.0425 44.121 3826.31 0.240 0.057 0.059 4412 3826.56 0.253 0.570 0.059
0.0375 38.893 3922.18 0.235 0.064 0.067 3.889 3922.37 0.252 0.645 0.067
0.0325 33.680 4004.38 0.230 0.068 0.071 3.368 4004.52 0.245 0.680 0.071
0.0275 28.477 4072.82 0.222 0.086 0.090 2.847 4072.91 0.241 0.861 0.090
0.0225 23.285 4133.77 0.211 0.101 0.105 2.328 4133.84 0.236 1.011 0.105
0.0175 18.102 4180.22 0.205 0.129 0.135 1.810 4180.25 0.219 1.292 0.135
0.0125 12.926 4211.51 0.203 0.181 0.189 1.292 4211.53 0.217 1.813 0.189
0.0075 7.753 4234.36 0.201 0.112 0.325 0.775 4234.37 0.229 3.122 0.325
0.0025 2.584 4248.35 0.220 0.959 1.000 0.258 4248.35 0.233 9.594 1.000

4.2. Effect of thickness of magnetostrictive layers

Vibration response of FGM1 shell for various thicknesses of the magnetostrictive layers (/,,) are studied.
Magnetostrictive damping coeflicients and natural frequencies for various thicknesses of magnetostrictive
layers are listed in Tables 4-7. These damping coefficients and natural frequencies refer to the first mode of
vibration. Vibration suppression time for /4, equals to I mm, 2mm, 3mm and 5Smm are listed in Tables 4-7,
respectively. These computations are carried out for various locations (Z,,) of the magnetostrictive layers
and listed in Tables 4-7. The vibration suppression time () versus the distance of magnetostrictive layers
from the neutral plane (Z,,) for various thicknesses of magnetostrictive layers (/,,) are plotted in Fig. 5.
This includes magnetostrictive layers of thicknesses (/) of lmm, 2mm and 3mm at various locations.
From Fig. 5 one can observe that 1 mm thick magnetostrictive layer exhibits better attenuation as compared
to 2mm and 3mm thick magetostrictive layers.

Therefore, relatively thinner magnetostrictive layer leads to better attenuation characteristics. These re-
sults presented here agree qualitatively with the results presented in Pradhan et al. (2001) and He et al.
(2002).
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3 15

1
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0

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Distance from the neutral plane (m)

Fig. 5. Vibration suppression time z; for various thicknesses of magnetostrictive layers (/).



2484 S.C. Pradhan | International Journal of Solids and Structures 42 (2005) 2465-2488
4.3. Effect of vibration modes

Effect of higher modes of vibration on the vibration suppression time is studied for the FGMI1 shell.
Transverse deflection versus time for various cases of the FGM shells are plotted in Figs. 6-8. Fig. 6a—d
show the transient response of modes 1, 3, 5 and 7, respectively. It is observed that attenuation favours
the higher modes. This is clearly seen in Fig. 7a and b, where modes 1 and 2 are compared for FGM1
and FGM2 shells. These figures indicate that mode 2 attenuates at a significantly faster rate as compared
to mode 1. Present results in Fig. 6a—d also show that the vibration suppression time decreases very rapidly
as vibration mode number increases. These vibration results for various modes agree qualitatively with the
results presented in Pradhan et al. (2001).

4.4. Effect of intensity of control gain

Vibration suppression time (z,) for the intensity of control gain C(f)r. values of 1000 and 10,000 are com-
puted and the results are listed in Table 7. This shows that increase of intensity of control gain results in
proportional increase in vibration suppression time. From the results listed in Table 7, it is interesting to
note that the suppression time ratio (Z) is directly proportional to the control gain of the applied magnetic
field. Further, it is observed that the normalized suppression time ratio (z,) is independent of the intensity of
control gain. These results agree qualitatively with the results presented in Pradhan et al. (2001).

4.5. Effect of material properties of FGM shell

Effect of material properties of the FGM shell on the vibration suppression time is studied. Fig. 8
displays the vibration suppression for FGMI1 (Stainless Steel-Nickel) and FGM?2 (Nickel-Aluminum
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Fig. 6. Vibration suppression of higher modes at the midpoint of the FGMI shell: (a) n =1, (b)n=3, (c)n=5and (d) n=7.
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Fig. 7. Comparison of controlled motion at the midpoint of the (a) FGM1 and (b) FGM2 shells for vibration modes n = 1 and n = 2.
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Fig. 8. Vibration suppression of FGM1 and FGM2 shells for Z,, = 9.5mm.

Oxide) shells. For this comparison study Z,, is assumed to be 9.5mm. From Fig. 8, it is observed that
FGM1 shell has lower frequency compared to the FGM?2 shell. This confirms that the FGM1 shell has
lower flexural rigidity and thus a lower frequency compared to the FGM2 shell. These results agree qual-
itatively with the results presented in Pradhan et al. (2001).
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5. Conclusions

A theoretical formulation for a FGM shell with embedded magnetostrictive layers has been presented.
The analytical solutions for the case of simply supported boundary conditions has been derived, and
numerical results are presented. The formulation is based on the first-order shear deformation shell theory
(FSDT), and the analytical solution for the simply supported shell is based on the Navier solution ap-
proach. The effects of the material properties of the FGM shell, thickness of magnetostrictive layers and
location of the magnetostrictive layers on the vibration suppression time have been examined in detail.
It was found that attenuation effects were better if the magnetostrictive layers were placed farther away
from the neutral plane. Attenuation effects were also better when the magnetostrictive layers were relatively
thinner. Further, suppression time ratio was directly proportional to the control gain of the applied
magnetic field.
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Appendix A

1
St = Ano? + Ags” + CiDesp” + KsAss 2 + 2CoBgs
1

S12 = A]zd‘B +A66aﬁ — C(2)D6606ﬂ

1 1 1
Si3 = —A4Ap00— — Apo— — KgAsso—
13 110€R1 120€R2 S 5505R1

1
Si4 = B0 + B> + Coff*Des — KsAssR—
1

S5 = Bof + Besaf + CoDesotp
Cz=s30, Ch=Cp=Cu=C;s5=0

21, 13
M = 11+R— , My = [l+]T , Mp=Mp3z=M;s=0
I

1
g 2 2 Asa 2
Sy = Ageot” + CyaDes + A2 + Z 2Cyo"Bes
2
A A Ay
S = —-— e - K ——
23 R, B R B SR, B

Sy = Besotf — CoDestf 4 B1ooff

Ay

Sas = Besot® — CoDgst® + By f* — Kst
2
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Cy=Apf, Ciu=Cp=Cu=Cis=0

21 1
My = (L+22), Mys=(L+=), My =My=My=0
R, R,
A 24, Axn

Sy = KgAsso® + KgAuf* + — =
33 sAsso” + KsAuf +R% RiR R%

B“O( BIQOC
Sy = —ou%_ Pe% g4
34 R, R + KsAsso
Bif Bxnp
Sy = — 2P PuP L oy
35 R, R, + KsAup
of of
Cyy =243 Cy,Cp,C34,C35 =0
R, R,

Mz =1, My My =Mz =Mss =0

Sus = D110 + Defp* + KsAss

S4s = Do + Desofp

Cis=%H30, Cun=Cip=Cu=C4is5=0

My =1, My=My, Mp=My=M4;=0
Sss = De® + D> + KsAus

Csys = Bnf, Cs1,Cs,Cs4,Cs5 =0

Mss =1, Msy =My, Ms =Ms;=Ms4=0
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