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Abstract

Analytical solutions of functionally graded material (FGM) shells with embedded magnetostrictive layers are pre-
sented in this study. These magnetostrictive layers are used for the vibration suppression of the functionally graded
shells. The first-order shear deformation shell theory (FSDT) is employed to study the vibration suppression character-
istics. The exact solution for the FGM shell with simply supported boundary conditions is based on the Navier solution
procedure. Negative velocity feedback control is used. The parametric effect of the location of the magnetostrictive lay-
ers, material properties, and control parameters on the suppression effect are investigated in detail. It is found that (i)
the shortest vibration suppression time is achieved by placing the actuating layers farthest from the neutral axis, (ii) the
use of thinner smart material layers leads to better vibration attenuation characteristics, and, (iii) the vibration suppres-
sion time is longer for a smaller value of the feedback control coefficient.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of materials have been used in sensor/actuator applications. Piezoelectric materials, magne-
tostrictive materials, shape memory alloys, and electro-rheological fluids have all been integrated with
structures to make smart structures. Among these materials piezoelectric, electrostrictive and magnetostric-
tive materials have the capability to serve as both sensors and actuators. Piezoelectric materials exhibit a
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Nomenclature

A31, A32, B31, B32 magnetostrictive coefficients integrated over the shell thickness
Bn normalized B31

a, b positive real number
a1, a2 surface metrics
e1, e2, e4, e5, e6 total strains
e01, e02, e04, e05, e06 strains from classical shell theory
n1, n2, f orthogonal curvilinear co-ordinates
j1, j2, j6 FSDT strain correction factors
k eigenvalue
k0 arbitrary constant
/1, /2 rotational displacements
m1, m2 Poisson�s ratios of material 1 and material 2
mfgm Poisson�s ratio of FGM material 1 and material 2
mm Poisson�s ratio of magnetostrictive material
q(k) density of kth layer
qm density of magnetostrictive material
r1, r2, r4, r5, r6 stress components
xd damping frequency
a length of the shell
b breadth of the shell
bc coil width
c(t) control gain
dA1, dA2 elementary areas across the thickness of the shell
ds square of the distance on the middle surface
dS square of the distance
eðkÞ31 , eðkÞ32 , eðkÞ36 magnetostrictive material properties of kth layer
g1, g2 tangents to n1, n2
h thickness of the shell
kc magnetostrictive coil constant
m, m1, m2, n positive integers
nc number of coil turns
nm number of constituent materials in the FGM
q uniformly distributed load in the transverse direction
r position vector on the middle surface
rc coil radius
tn normalized value of ts
ts suppression time ratio
u1, u2, u3 displacements at the middle surface
�u1, �u2, �u3 displacements along n1, n2, f
z thickness co-ordinate
[ ]0 contribution due to classical shell theory
[ ]M contribution due to magnetostrictive layer
Aij, Bij, Dij stiffness coefficients of FGM material
C0 constant depends on R1 and R2
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E1, E2 Young�s modulus of material 1 and material 2
Efgm Young�s modulus of FGM material
Em Young�s modulus of magnetostrictive material
Gfgm shear modulus of FGM material
H magnetic field intensity
I coil current intensity
I1, I2, I3 moment of inertia
KS shear correction factor
L1, L2, L3 Lame� coefficients
M1, M2, M6 moments applied on the edges of the shell
MM moments due to the magnetostrictive layer
N number of layers assumed for computation
N1, N2, N6 forces applied on the edges of the shell
NM forces due to the magnetostrictive layer
P�1, P1, P2, P3 FGM material constants
Pfgm material property of the FGM material
Pi material properties of the constituents of the FGM material
Q1, Q2 shear forces applied on the edges of the shell

QðkÞ
ij stiffness coefficients of kth layer

R position vector of arbitrary point
R1, R2 principal radii of curvature of the middle surface of the shell
Rn positive real number
Sij, Cij, Mij coefficients of stiffness, damping and mass matrices
Sij coefficients of solution matrix
T temperature
Vc volume fraction of ceramic material
Vfi volume fraction of the constituents of FGM material
Vm volume fraction of metal material
Wmax maximum amplitude in transverse direction
Zm transverse location of magnetostrictive layer in the FGM shell
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linear relationship between the electric field and strains for low field values (up to 100V/mm). This relation-
ship is nonlinear for large fields, and the material exhibits hysteresis (Uchino, 1986). Further, piezoelectric
materials show dielectric aging and hence lack reproducibility of strains, i.e. a drift from zero state of strain
is observed under cyclic electric field applications (Cross and Jang, 1988).

Crawley and Luis (1987) demonstrated the feasibility of using piezoelectric actuators for free vibration
reduction of a cantilever beam. Baz et al. (1990) investigated vibration control using shape memory alloy
and carried out their characterization. Choi et al. (1990) demonstrated the vibration reduction effects of
electro-rheological fluid actuators in a composite beam. An ideal actuator, for distributed embedded appli-
cation, should have high energy density, negligible weight, and point excitation with a wide frequency band-
width. Terfenol-D, a magnetostrictive material, has the characteristics of being able to produce strains up
to 2000 and an energy density as high as 0.0025Jm�3 in response to a magnetic field. Goodfriend and
Shoop (1992) reviewed the material properties of Terfenol-D with regard to its use in vibration isolation.
Anjanappa and Bi (1994) investigated the feasibility of using embedded magnetostrictive mini actuators for
smart structure applications, such as vibration suppression of beams. Bryant et al. (1993) presented exper-
imental results of a magnetostrictive Terfenol-D rod used in dual capacity of passive structural support
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element and an active vibration control actuator. Krishna Murty et al. (1997) proposed magnetostrictive
actuators that take advantage of ease with which the actuators can be embedded, and the use of remotely
excitation capability of magnetostrictive particle as new actuators for smart structures. This work is limited
to flexible beam theory.

Friedmann et al. (2001) used magnetostrictive material Terfenol-D in high speed helicopter rotors and
studied the vibration reduction characteristics. Vibration and shape control of flexible structures is achieved
with the help of actuators and a control law. Response of FGM shells are also studied by He et al. (2002),
Woo and Meguid (2001), Pradhan et al. (2000) and Loy et al. (1999). Many modern techniques have been
developed in recent years to meet the challenge of designing controllers that suit the function under re-
quired conditions. There have been a number of studies on vibration control of flexible structures using
magnetostrictive materials (Anjanappa and Bi, 1994; Bryant et al., 1993; Krishna Murty et al., 1997;
Giurgiutiu et al., 2001; Pradhan et al., 2001). Although there have been important research efforts devoted
to characterizing the properties of Terfelon-D material, fundamental information about variation in elasto-
magnetic material properties in a functionally graded shell is not available.

In the present study vibration control of functionally graded shells are studied using the first-order shear
deformation theory. Exact solutions are developed for simply supported doubly curved functionally graded
shells with magnetostrictive layers. This closed form solution exists for FGM shells where the coefficients
A16, A26, B16, B26, D16, D26, A45 are equal to zero. A simple negative velocity feedback control is used to
actively control the dynamic response of the structure through a closed loop control. Numerical results of
vibration suppression effect for various locations of the magnetostrictive layers, material properties, and
control parameters are presented.
2. Theoretical formulation

2.1. Kinematic description

Fig. 1a contains a differential element of a doubly curved shell element with constant curvatures along
coordinate directions n1 and n2 (Reddy, 1984a). n1, n2 and f denote the orthogonal curvilinear coordinates
such that n1 and n2 curves are the lines of curvature on the middle surface (f = 0). Thus, for the doubly
curved shell panel considered here, the lines of the principal curvature coincide with the coordinate lines.
The values of the principal radii of curvature of the middle surface are denoted by R1 and R2. The position
vector of a point (n1,n2,0) on the middle surface is denoted by r, and the position of an arbitrary point
(n1,n2,f) is denoted by R (see Fig. 1b). The square of the distance ds between points (n1,n2,0) and
(n1 + dn1,n2 + dn2,0) is determined by
ðdsÞ2 ¼ dr � dr ¼ a2
1ðdn1Þ2 þ a2

2ðdn2Þ2 ð1Þ

in which dr = g1dn1 + g2dn2, the vectors g1 and g2 ðgi ¼ or

oni
Þ are tangents to the n1 and n2 coordinate lines

and a1 and a2 are the surface metrics
a2
1 ¼ g1 � g1; a2

2 ¼ g2 � g2 ð2Þ

The square of the distance dS between (n1,n2,f) and (n1 + dn1,n2 + dn2,f + df) is given by
ðdSÞ2 ¼ dR � dR ¼ L2
1ðdn1Þ2 þ L2

2ðdn2Þ2 þ L2
3ðdfÞ2 ð3Þ
in which dR ¼ ðoR
on1
Þdn1 þ ðoR

on2
Þdn2 þ ðoR

ofÞdf and L1, L2, and L3 are the Lame� coefficients (Reddy, 1984a)
L1 ¼ a1 1þ f
R1

� �
; L2 ¼ a2 1þ f

R2

� �
; L3 ¼ 1 ð4Þ
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Fig. 1. Geometry and stress resultants of doubly curved shell.
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From Fig. 1a, the elements of area of the cross sections are
dA1 ¼ L1 dn1 df ¼ a1 1þ f
R1

� �
dn1 df

dA2 ¼ L2 dn2 df ¼ a2 1þ f
R2

� �
dn2 df

ð5Þ
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Next, we introduce the stress resultants acting on a shell element. For example, N1 denotes the tensile
force measured per unit length along a n2 coordinate line on a cross section perpendicular to a n1 coordinate
line (see Fig. 1c). The total tensile force on the differential element in the n1 direction is N1a2dn2. This force
is equal to the integral r1dA2 over the thickness
N 1a2 dn2 ¼
Z h=2

�h=2
r1 dA2 ð6Þ
where h the total thickness of the shell (f = �h/2 and f = h/2 denotes the bottom and top surface of the
shell). Using Eq. (5) we can write
N 1 ¼
Z h=2

�h=2
r1 1þ f

R2

� �
df ð7Þ
Similarly, the remaining stress resultants per unit length can be defined. The complete set of expression for
forces and moments are written as (Reddy, 1984a)
N 1

N 2

N 6

N 6

Q1

Q2

M1

M2

M6

M6

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

¼
Z h=2

�h=2

r1 1þ f
R2

� �
r2 1þ f

R1

� �
r6 1þ f

R2

� �
r6 1þ f

R1

� �
r5 1þ f

R2

� �
r4 1þ f

R1

� �
fr1 1þ f

R2

� �
fr2 1þ f

R1

� �
fr6 1þ f

R2

� �
fr6 1þ f

R1

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

df ð8Þ
For shallow shells, one can neglect f/R1 and f/R2 terms as in a plate theory. The shear forces Qi are often
corrected by introducing shear correction factor KS:8 9
Q1

Q2


 �
¼ KS

Z h=2

�h=2

r5 1þ f
R2

� �
r4 1þ f

R1

� �><
>:

>=
>;df ð9Þ
2.2. Displacement field

We assume the following form of the displacement field that is consistent with the assumptions of a
moderately thick shell or Sanders shell theory (Reddy, 1984b).
�u1ðn1; n2; f; tÞ ¼
L1

a1

u1ðn1; n2; tÞ þ f/1ðn1; n2; tÞ

�u2ðn1; n2; f; tÞ ¼
L2

a2

u2ðn1; n2; tÞ þ f/2ðn1; n2; tÞ

�u3ðn1; n2; f; tÞ ¼ u3ðn1; n2; tÞ

ð10Þ
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in which ð�u1; �u2; �u3Þ are the displacements of a point (n1,n2,f) along the (n1,n2,f) coordinates; and
(u1,u2,u3) = displacements of a point (n1,n2,0) on the mid surface of the shell. Substituting Eq. (10) into
strain–displacement relations for the first-order shear deformation theory, one obtains
e1
e2
e4
e5
e6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

e01
e02
e04
e05
e06

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ f

j1

j2

0

0

j6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð11Þ
where
e01
e02
e04
e05
e06

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1
a1

ou1
on1

þ 1
R1

u3
1
a2

ou2
on2

þ 1
R2

u3
1
a2

ou3
on2

þ /2 � 1
R2

u2
1
a1

ou3
on1

þ /1 � 1
R1

u1
1
a1

ou2
on1

þ 1
a2

ou1
on2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð12Þ

j1 ¼
1

a1

o/1

on1

; j2 ¼
1

a2

o/2

on2

j6 ¼
1

a1

o/2

on1

þ 1

a2

o/1

on2

þ 1

2

1

R2

� 1

R1

� �
1

a1

ou2
on1

� 1

a2

ou1
on2

� � ð13Þ
and (/1,/2) are rotations of a transverse normal line about the n2 and n1 coordinate axes, respectively.
/1 ¼ � ou3
on1

; /2 ¼ � ou3
on2

ð14Þ
2.3. Equations of motion

The displacement field (10) can be used to derive the governing equations of the first-order shear defor-
mation theory of shells. By means of Hamilton�s principle (or the dynamic version of the principle of virtual
displacements), one can obtain the following governing equations of motion in terms of the displacements
and stress resultants in the Cartesian coordinate system (x1,x2,x3 = f) (assuming that N12 = N21 = N6 and
M12 = M21 = M6):
oN 1

ox1
þ o

ox2
ðN 6 þ C0M6Þ þ

Q1

R1

¼ I1 þ 2
I2
R1

� �
o2u1
ot2

þ I1 þ
I3
R1

� �
o2/1

ot2

o

ox1
ðN 6 � C0M6Þ þ

oN 2

ox2
þ Q2

R2

¼ I1 þ 2
I2
R2

� �
o2u2
ot2

þ I1 þ
I3
R2

� �
o2/2

ot2

oQ1

ox1
þ oQ2

ox2
� N 1

R1

þ N 2

R2

� �
þ q ¼ I1

o2u3
ot2

oM1

ox1
þ oM6

ox2
� Q1 ¼ I2

o2/1

ot2
þ I1 þ

I3
R1

� �
o2u1
ot2

oM6

ox1
þ oM2

ox2
� Q2 ¼ I2

o2/2

ot2
þ I1 þ

I3
R2

� �
o2u2
ot2

ð15Þ
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where
C0 ¼
1

2

1

R1

� 1

R2

� �
;

1

oxi
¼ 1

ai

1

oni
ði ¼ 1; 2Þ; I i ¼

XN

k¼1

Z fkþ1

fk

qðkÞðfÞi�1 df ði ¼ 1; 2; 3Þ ð16Þ
and q(k) is the density of the kth layer. N is the number of layers assumed for computation.

2.4. Constitutive relations

Suppose that the shell is composed of N functionally graded layers. The stress–strain relations of the kth
layer, whether structural layer or actuating/sensing layer, in the shell coordinate system are given as
r1

r2

r4

r5

r6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

2
6666664

3
7777775

ðkÞ e1
e2
e4
e5
e6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

� f

e31
e32
0

0

e36

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðkÞ

H ð17Þ
where QðkÞ
ij are the stiffnesses of kth layer and
Q11 ¼
Efgm

1� m2fgm
; Q12 ¼

mfgmEfgm

1� m2fgm
; Q22 ¼ Q11

Q44 ¼ Q55 ¼ Q66 ¼ Gfgm

ð18Þ
The superscript k on Qij as well as on the engineering constants Efgm, mfgm and so on are omitted for brevity.
In Eq. (17), H denotes the intensity of the magnetic field. H is applied normal to the thickness of the shell.
eij are the magnetostrictive material coefficients.

2.5. Feedback control

A velocity feedback control is used in the present study. In the velocity feed back control, the magnetic
field intensity H is expressed in terms of coil current I(n1,n2, t)
Hðn1; n2; tÞ ¼ kcIðn1; n2; tÞ ð19Þ

Current I is related to the transverse velocity by
Iðn1; n2; tÞ ¼ cðtÞ ou3ðn1; n2; tÞ
ot

ð20Þ
where kc is the magnetic coil constant and is related to the number of coil turns nc, coil width bc, and coil
radius rc
kc ¼
ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2c þ 4r2c

q ð21Þ
The parameter c(t) is known as the control gain.

2.6. Functionally graded material

FGM are basically particles in matrix composite materials, which are made by mixing two or more dif-
ferent materials. Most of the FGM are being used in high temperature environment and their material
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properties are temperature dependent. A typical material property Pi can be expressed as a function of the
environment temperature T(K)
P i ¼ P 0ðP�1T�1 þ 1þ P 1T þ P 2T 2 þ P 3T 3Þ ð22Þ

where, P0, P�1, P1, P2 and P3 are temperature coefficients and are unique to the constituent materials. The
material properties Pfgm of FGM are controlled by volume fractions Vfi and individual material properties
Pi of the constituent materials.
P fgm ¼
Xnm
i¼1

P iV fi ð23Þ
In the present case two different materials are particle mixed to form the FGM material. A schematic of
FGM shell with magnetostrictive layers is shown in Fig. 2a and b. In Fig. 2a it is shown that two layers of
magnetostrictive materials are placed symmetrically away from the neutral plane of the FGM shell. A
zoomed view of section AA of Fig. 2a is shown in Fig. 2b. Assuming there are no defects like voids and
foreign particles in the FGM material, sum of the volume fractions of all the constituent materials is unity.
Xnm

i¼1

V fi ¼ 1 ð24Þ
For example, metal and ceramic materials (nm = 2) are mixed to form the FGM shell. Average volume
fraction of the metal and ceramic materials are calculated by simple integration of the distribution over
Fig. 2. Functionally graded shell with embedded magnetostrictive layers.
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a domain. Different problems of interest have different expressions of volume fractions. For bending prob-
lems of plates and shells the volume fractions of metal (Vm) and ceramic (Vc) materials are defined as
V m ¼ h � 2z
2h

� �Rn

V c ¼ 1� V m

ð25Þ
where z is the thickness co-ordinate (�h/2 6 z 6 h/2) and h represents the shell thickness. Rn is the power
law exponent (0 6 Rn 61). Here volume fraction of the metal material (Vm) varies from 100% to 0% as z
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Fig. 3. Volume fractions of metal and ceramic materials in the FGM shell.



Table 1
Material properties of FGM constituent materials

Stainless Steel Nickel Aluminum Oxide

Density (kgm�3) 7900 8909 3970
Coefficient E (Nm�2) m E (Nm�2) m E (Nm�2) m
P0 201.04E09 0.3262 244.27E09 0.2882 349.55E09 0.260
P�1 0 0 0 0 0 0
P1 3.079E�04 �2.002E�04 �1.371E�03 1.133E�04 �3.853E�04 0
P2 �6.534E�07 3.797E�07 1.214E�06 0 4.027E�07 0
P3 0 0 �3.681E�10 0 �1.673E�10 0
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varies from �h/2 to h/2. Similarly volume fraction of the ceramic material (Vc) varies from 0% to 100% as z

varies from �h/2 to h/2. For various Rn values the average volume fractions of metal (Vm) and ceramic (Vc)
materials are depicted in Fig. 3a and b, respectively. The Young�s modulus and Poisson�s ratio of a FGM
shell made up of two different materials are expressed as
Efgm ¼ ðE2 � E1Þ
2z þ h
2h

� �Rn

þ E1 ð26Þ

mfgm ¼ ðm2 � m1Þ
2z þ h
2h

� �Rn

þ m1 ð27Þ
E1, E2 and Efgm are the Young�s moduli of the constituent materials and the FGMmaterial, respectively. m1,
m2 and mfgm are the Poisson�s ratios of the constituent materials and the FGM material, respectively. From
these equations ((26) and (27)), it is interesting to note that at z = �h/2, FGM material properties are same
as those of material 1. While at z = h/2, FGM material properties are same as those of material 2. Thus, the
FGM material properties vary smoothly across thickness, from material 1 at the inner surface to material 2
at the outer surface.

Two different FGM materials are considered for the present study viz. FGM1 and FGM2. FGM1 con-
sists of Stainless Steel and Nickel materials (Fig. 2b). FGM2 consists of Nickel and Aluminum Oxide mate-
rials. Material properties of Stainless Steel, Nickel materials and Aluminum Oxide are listed in Table 1. In
the present work, we have used the room temperature to calculate the material properties of the FGM
shells.
3. Analytical solution

Analytical solutions of the set of equations (15) can be obtained for simply supported functionally
graded shell panels. Towards using the Navier type solution, first we write the governing equations in terms
of the displacements. Using the constitutive equations, the layer constitutive equations can be expressed as
(Reddy, 1984a)
fNg
fMg


 �
¼

½A� ½B�
½B� ½D�

� � fe0g
fjg


 �
�

fNg
fMg


 �M

ð28Þ

Q2

Q1


 �
¼ KS

A44 A45

A45 A55

� �
e04
e05

( )
� QM

2

QM
1

( )
ð29Þ
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where the laminate stiffness coefficients (Aij,Bij,Dij) are defined by
Aij ¼
XN

k¼1

QðkÞ
ij ðfkþ1 � fkÞ; i; j ¼ 1; 2; 6

Bij ¼
1

2

XN

k¼1

QðkÞ
ij ðf2kþ1 � f2kÞ; i; j ¼ 1; 2; 6

Dij ¼
1

3

XN

k¼1

QðkÞ
ij ðf3kþ1 � f3kÞ; i; j ¼ 1; 2; 6

Aij ¼
XN

k¼1

QðkÞ
ij ðfkþ1 � fkÞ; i; j ¼ 4; 5

ð30Þ
and the magnetostrictive stress resultants {NM} and {MM} are defined as
NM
1

NM
2

( )
¼

XN

k¼m1;m2;...

Z fkþ1

fk

e31

e32

( )
H f df ¼ ckc

XN

k¼m1;m2;...

Z fkþ1

fk

e31

e32

( )
ou3
ot

df �
A31

A32

( )
ou3
ot

ð31Þ

MM
1

MM
2

( )
¼

XN

k¼m1;m2;...

Z fkþ1

fk

e31

e32

( )
fH f df ¼ ckc

XN

k¼m1;m2;...

Z fkþ1

fk

e31

e32

( )
ou3
ot

fdf �
B31

B32

( )
ou3
ot

ð32Þ
where
Aij ¼ ckc
X

k¼m1;m2;...

eðkÞij ðfkþ1 � fkÞ; i ¼ 3; j ¼ 1; 2

Bij ¼
1

2
ckc

X
k¼m1;m2;...

eðkÞij ðf2kþ1 � f2kÞ; i ¼ 3; j ¼ 1; 2
ð33Þ
and m1, m2,. . . denote the layer numbers of the magnetostrictive (or any actuating/sensing) layers. The
equations of motion (15) can be expressed in terms of displacements (u1,u2,u3,/1,/2) by substituting for
the force and moment resultants from Eqs. (28) and (29). For homogeneous laminates, the equations of
motion (15) take the following form (Reddy, 1984a)

du1:
A11

o2u1
ox21

þ 1

R1

ou3
ox1

� �
þ A12

o2u2
ox1ox2

þ 1

R2

ou3
ox1

� �
þ A16

o2u2
ox21

þ o2u1
ox1ox2

� �
þ B11

o2/1

ox21
þ B12

o2/2

ox1ox2

þ B16

o
2/2

ox21
þ o

2/1

ox1ox2
� C0

o
2u2
ox21

� o
2u1

ox1ox2

� �� �
þ A16

o
2u1

ox1ox2
þ 1

R1

ou3
ox2

� �
þ A26

o
2u2
ox22

þ 1

R2

ou3

ox2

� �

þ A66

o2u2
ox1ox2

þ o2u1
ox22

� �
þ B16

o2/1

ox1ox2
þ B26

o2/2

ox22
þ B66

o2/2

ox1ox2
þ o2/1

ox22
� C0

o2u2
ox1ox2

� o2u1
ox22

� �� �

�A31

o2u3
ox1ot

þ 1

R1

KSA44 /1 þ
ou3
ox1

� u1

R1

� �
þ KSA45 /2 þ

ou3
ox2

� u2
R2

� �� �
� I1 þ 2

I2
R1

� �
o2u1
ot2

� I1 þ
I3
R1

� �
o2/1

ot2

¼ 0 ð34Þ
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du2:
A12

o2u1

ox1ox2
þ 1

R1

ou3
ox2

� �
þ A22

o2u2
ox22

þ 1

R2

ou3
ox2

� �
þ A26

o2u2
ox1ox2

þ o2u1
ox22

� �
þ B12

o2/1

ox1ox2
þ B22

o2/2

ox22

þ B26

o2/2

ox1ox2
þ o2/1

ox22
� C0

o2u2
ox1ox2

� o2u1
ox22

� �� �
þ A16

o2u1
ox21

þ 1

R1

ou3
ox1

� �
þ A26

o2u2
ox1ox2

þ 1

R2

ou3
ox1

� �

þ A66

o2u2
ox21

þ o2u1
ox1ox2

� �
þ B16

o2/1

ox21
þ B26

o2/2

ox1ox2
þ B66

o2/2

ox21
þ o2/1

ox2ox1
� C0

o2u2
ox21

� o2u1
ox1ox2

� �� �

�A32

o2u3
ox2ot

þ 1

R2

KSA45 /1 þ
ou3
ox1

� u1
R1

� �
þ KSA55 /2 þ

ou3
ox2

� u2
R2

� �� �
� I1 þ 2

I1
R2

� �
o2u2
ot2

� I1 þ
I3
R2

� �
o2/2

ot2

¼ 0 ð35Þ
du3:
KSA45
o
2u3

ox1ox2
þ o/2

ox1
� ou2

R2ox1

� �
þ KSA55

o
2u3
o
2x1

þ o/1

ox1
� ou1

R1ox1

� �
þ KSA44

o
2u3
o
2x2

þ o/2

ox2
� ou2

R2ox2

� �

þ KSA45

o2u3
ox1ox2

þ o/1

ox2
� ou1

R1ox2

� �
� 1

R1

A11

ou1
ox1

þ u3
R1

� �
þ A12

ou2
ox2

þ u3
R2

� �
þ A16

ou2
ox1

þ ou1
ox2

� �


þ B11

o/1

ox1
þ B12

o/2

ox2
þ B16

o/2

ox1
þ o/1

ox2
� C0

ou2
ox1

þ ou1
ox2

� �� �
�A31

ou3
ot

�

� 1

R2

A12

ou1
ox1

þ u3
R1

� �
þ A22

ou2
ox2

þ u3
R2

� �
þ A26

ou2
ox1

� ou1
ox2

� �
þ B12

o/1

ox1
þ B22

o/2

ox1




þ B26

o/2

ox1
þ o/1

ox2
� C0

ou2
ox1

� ou1
ox2

� �� �
�A32

ou3
ot

�
þ q � I1

o2u3
ot2

¼ 0 ð36Þ
d/1:
B11

o2u1
ox21

þ ou3
R1ox1

� �
þ B12

o2u2
ox1ox2

þ ou3
R2ox1

� �
þ B16

o2u2
ox21

þ o2u1
ox1ox2

� �
þ D11

o2/1

ox21
þ D12

o2/2

ox1ox2

þ D16

o2/2

ox21
þ o2/1

ox1ox2
� C0

o2u2

ox21
� o2u1
ox1ox2

� �� �
þ B16

o2u1
ox1ox2

þ ou3
R1ox2

� �
þ B26

o2u2
ox22

þ ou3
R2ox2

� �

þ B66
o
2u2

ox1ox2
þ o

2u1
ox22

� �
þ D16

o
2/1

ox1ox2
þ D26

o
2/2

ox22
þ D66

o
2/2

ox1ox2
þ o

2/1

ox22
� C0

o
2u2

ox1ox2
� o

2u1
ox22

� �� �

þ KSA45

ou3
ox2

þ /2 �
u2
R2

� �
þ KSA55

ou3
ox1

þ /1 �
u1
R1

� �
�B31

o2u3
ox1ot

� I2
o2/1

ot2
� I1 þ

I3
R1

� �
o2u1
ot2

¼ 0 ð37Þ
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d/2:
B16

o2u1
ox21

þ ou3
R1ox1

� �
þ B26

o2u2
ox1ox2

þ ou3
R2ox1

� �
þ B66

o2u2
ox21

þ o2u1
ox1ox2

� �
þ D16

o2/1

ox21
þ D26

o2/2

ox1ox2

þ D66

o2/2

ox21
þ o2/1

ox1ox2
þ 1

2

1

R2

� 1

R1

� �
o2u2
ox21

� o2u1
ox1ox2

� �� �
þ B12

o2u1
ox1ox2

þ ou3
R1ox2

� �

þ B22

o2u2
ox22

þ ou3
R2ox2

� �
þ B66

o2u2
ox1ox2

þ o2u1
ox22

� �
þ D12

o2/1

ox1ox2
þ D22

o2/2

ox22

þ D26

o2/2

ox1ox2
þ o2/1

ox22
þ 1

2

1

R2

� 1

R1

� �
o2u2
ox1ox2

� o2u1
ox22

� �� �
þ KSA44

ou3
ox2

þ /2 �
u2
R2

� �

þ KSA45
ou3
ox1

þ /1 �
u1
R1

� �
�B32

o
2u3

ox2ot
� I2

o
2/2

ot2
� I1 þ

I3
R2

� �
o
2u2
ot2

¼ 0 ð38Þ
Eqs. (34)–(38) describe five second-order, nonlinear, partial differential equations in terms of the five gen-
eralized displacements. The simply supported boundary conditions for the first-order shear deformation
shell theory (FSDT) are
u1ðx1; 0; tÞ ¼ 0; u1ðx1; b; tÞ ¼ 0; u2ð0; x2; tÞ ¼ 0; u2ða; x2; tÞ ¼ 0

/1ðx1; 0; tÞ ¼ 0; /1ðx1; b; tÞ ¼ 0; /2ð0; x2; tÞ ¼ 0; /2ða; x2; tÞ ¼ 0

u3ðx1; 0; tÞ ¼ 0; u3ðx2; b; tÞ ¼ 0; u3ð0; x2; tÞ ¼ 0; u3ða; x2; tÞ ¼ 0

ð39Þ
The boundary conditions in Eq. (39) are satisfied by the following expansions (Reddy, 1984a)
qðx1; x2; tÞ ¼
X1
m;n¼1

QmnðtÞ sin ax1 sin bx2

u1ðx1; x2; tÞ ¼
X1
m;n¼1

UmnðtÞ cos ax1 sin bx2

u2ðx1; x2; tÞ ¼
X1
m;n¼1

V mnðtÞ sin ax1 cos bx2

u3ðx1; x2; tÞ ¼
X1
m;n¼1

W mnðtÞ sin ax1 sin bx2

/1ðx1; x2; tÞ ¼
X1
m;n¼1

XmnðtÞ cos ax1 sin bx2

/2ðx1; x2; tÞ ¼
X1
m;n¼1

Y mnðtÞ sin ax1 cos bx2

ð40Þ
where a = mp/a and b = np/b.
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Substituting for Eqs. (39) and (40) into Eqs. (34)–(38) yields the equations
S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55

2
6666664

3
7777775

Umn

V mn

W mn

Xmn

Y mn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

0 0 C13 0 0

0 0 C23 0 0

0 0 C33 0 0

0 0 C43 0 0

0 0 C53 0 0

2
6666664

3
7777775

_Umn

_V mn

_W mn

_Xmn

_Y mn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ

M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0

M41 0 0 M44 0

0 M52 0 0 M55

2
6666664

3
7777775

€Umn

€V mn

€W mn

€Xmn

€Y mn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

0

Qmn

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð41Þ
where Sij, Cij and Mij (i, j = 1,2, . . ., 5) are defined in Appendix A.
Here the magnetostrictive coefficients A31, A32, B31 and B32 are defined in Eq. (33). For vibration con-

trol, we assume the uniformly distributed transverse load q = 0 and seek solution of the ordinary differen-
tial equations in Eq. (41) in the form
UmnðtÞ ¼ U 0e
kt; V mnðtÞ ¼ V 0e

kt; W mnðtÞ ¼ W 0e
kt; XmnðtÞ ¼ X 0e

kt; Y mnðtÞ ¼ Y 0e
kt ð42Þ
Substituting Eq. (42) into Eq. (41), for a nontrivial solution we obtain the result
S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55

������������

������������
¼ 0 ð43Þ
where
Sij ¼ Sij þ kCij þ k2Mij ð44Þ

for i, j = 1,2,3,4,5. This equation gives five sets of eigenvalues. The lowest one corresponds to the trans-
verse motion. The eigenvalue can be written as k = �k0 + ixd, so that the damped motion is given by
u3ðx1; x2; tÞ ¼
1

xd

e�k0t sinxdt sin
npx1
a

sin
npx2
b

ð45Þ
In arriving at the last solution, the following initial conditions are used:
u1ðx1; x2; 0Þ ¼ 0; _u1ðx1; x2; 0Þ ¼ 0; u2ðx1; x2; 0Þ ¼ 0;

_u2ðx1; x2; 0Þ ¼ 0; u3ðx1; x2; 0Þ ¼ 0; _u3ðx1; x2; 0Þ ¼ 1;

/1ðx1; x2; 0Þ ¼ 0; _/1ðx1; x2; 0Þ ¼ 0; /2ðx1; x2; 0Þ ¼ 0;

_/2ðx1; x2; 0Þ ¼ 0

ð46Þ
4. Results and discussion

In the present work a theoretical analysis of a functionally graded material (FGM) shell, consisting of
layers of magnetostrictive material. The magnetostrictive material is assumed to impart vibration control
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through a velocity dependent feedback law that controls the current to the magnetic coils energizing the
magnetostrictive material. First-order shear deformation theory (FSDT) is used in the derivation. Numer-
ical simulation results are presented. Effect of various parameters on the vibration suppression time is stud-
ied. These parameters are (a) location of magnetostrictive layer from the neutral plane, (b) thickness of
magnetostrictive layer, (c) higher modes of vibration, (d) material properties of magnetostrictive material
and (e) material properties of FGM material.

The FGM shell is considered to be of 1m · 1m dimension. Two different types of FGM shells (FGM1
and FGM2) are considered for the present study. FGM1 is made up of Stainless Steel and Nickel. FGM2 is
made up of Nickel and Aluminum Oxide. For most of the present work FGM1 is employed. In the present
work if it is not mentioned FGM2 means it is FGM1 shell. The material properties of constituent materials,
Stainless Steel, Nickel and Aluminum Oxide of the FGM shells are listed in Table 1. Two layers of mag-
netostrictive materials are placed symmetrically away from the neutral plane of the FGM shell. These layers
are shown in Fig. 2a. A zoomed view of section AA of Fig. 2a is shown in Fig. 2b. Magnetostrictive mate-
rial properties are considered to be
Table
Variou

Zm/m

0.0095
0.0085
0.0075
0.0065
0.0055
0.0045
0.0035
0.0025
0.0015
0.0005

Table
Variou

Zm/m

0.0095
0.0085
0.0075
0.0065
0.0055
0.0045
0.0035
0.0025
0.0015
0.0005
Em ¼ 26:5GPa; mm ¼ 0:0; qm ¼ 9250kgm�3; cðtÞrc ¼ 104 ð47Þ
The numerical values of various materials and structural constants based on different locations of mag-
netostrictive layers and FGM material properties are listed in Tables 2 and 3.
2
s coefficients of FGM1 (Stainless Steel–Nickel) shell

D11/Nm
(106)

D12/Nm
(105)

D66/Nm
(105)

A44/Nm�1

(1010)
I1/kgm

�1

(102)
I3/kgm
(10�2)

�A31

(102)
�B31

(104)
Bn

0.124 0.376 0.434 0.311 0.849 0.287 0.926 0.879 1.000
0.132 0.401 0.460 0.311 0.849 0.286 0.926 0.787 0.895
0.139 0.423 0.484 0.311 0.849 0.285 0.926 0.694 0.790
0.145 0.442 0.505 0.311 0.849 0.284 0.926 0.601 0.684
0.150 0.459 0.523 0.311 0.849 0.283 0.926 0.509 0.579
0.155 0.473 0.538 0.311 0.849 0.282 0.926 0.416 0.473
0.158 0.484 0.550 0.311 0.849 0.281 0.926 0.324 0.369
0.161 0.492 0.558 0.311 0.849 0.280 0.926 0.231 0.263
0.162 0.498 0.564 0.311 0.849 0.280 0.926 0.138 0.157
0.163 0.501 0.567 0.311 0.849 0.280 0.926 0.046 0.052

3
s coefficients of FGM2 (Nickel–Aluminum Oxide) shell

D11/Nm
(106)

D12/Nm
(105)

D66/Nm
(105)

A44/Nm�1

(1010)
I1/kgm

�1

(102)
I3/kgm
(10�2)

�A31

(102)
�B31

(104)
Bn

0.161 0.436 0.586 0.424 0.672 0.240 0.926 0.879 1.000
0.171 0.465 0.625 0.424 0.672 0.235 0.926 0.787 0.895
0.181 0.491 0.658 0.424 0.672 0.230 0.926 0.695 0.791
0.189 0.514 0.688 0.424 0.672 0.226 0.926 0.602 0.685
0.196 0.533 0.713 0.424 0.672 0.223 0.926 0.509 0.579
0.202 0.549 0.735 0.424 0.672 0.220 0.926 0.417 0.474
0.206 0.563 0.752 0.424 0.672 0.218 0.926 0.324 0.369
0.210 0.573 0.764 0.424 0.672 0.216 0.926 0.231 0.263
0.213 0.579 0.773 0.424 0.672 0.215 0.926 0.139 0.158
0.213 0.582 0.777 0.424 0.672 0.215 0.926 0.046 0.052
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In this study, the vibration suppression time (ts) is defined as the time required to reduce the uncontrolled
vibration amplitude to one-tenth of its initial amplitude. In the present numerical simulations the suppres-
sion time, thickness of the magnetostrictive layer are denoted by ts and hm, respectively. In Fig. 2b, Zm

represents the distance between the location of the magnetostrictive layer and the neutral plane.

4.1. Effect of magnetostrictive layer location

Effect of location of magnetostrictive layers on the vibration suppression is studied. Fig. 2a and b show
the location of magnetostrictive layers in the FGM shells. Transverse deflection versus time for Zm of
9.5mm, 7.5mm, 5.5mm and 3.5mm are plotted in Fig. 4a–d, respectively. For Zm equals to 9.5mm Fig.
4a shows shortest suppression time (ts) of 0.22s and for Zm equals to 3.5mm Fig. 4d shows longest suppres-
sion time (ts) of 0.59s. From Fig. 4a–d, shortest suppression time is observed when the magnetostrictive
layers are placed farther away from the neutral plane. Similarly, from Fig. 4a–d one can observe that, long-
est suppression time occurs when the magnetostrictive layer is located closest to the neutral plane of the
shell.

Influence of the position of the magnetostrictive layers in the thickness direction from the neutral plane
of the shell on the damping of the vibration response are listed in Tables 4–7. In Tables 4–7, the value of k0
[see Eq. (36)] increases when the magnetostrictive layer is located farther away from the neutral axis,
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Fig. 4. Comparison of uncontrolled (- - -) and controlled (—) motion at the midpoint of the FGM1 shell for various locations of
magnetostrictive layers, (a) Zm = 9.5mm, (b) Zm = 7.5mm, (c) Zm = 5.5mm and (d) Zm = 3.5mm.



Table 4
Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates hm = 1mm

Zm (m) �k0 ±xd Wmax (mm) ts (s) tn

0.0095 10.212 752.04 1.329 0.228 0.053
0.0085 9.136 776.53 1.287 0.237 0.055
0.0075 8.061 799.46 1.230 0.277 0.064
0.0065 6.986 813.75 1.209 0.311 0.072
0.0055 5.911 829.02 1.187 0.371 0.086
0.0045 4.836 845.02 1.163 0.448 0.104
0.0035 3.761 851.32 1.155 0.592 0.137
0.0025 2.686 858.55 1.146 0.825 0.191
0.0015 1.612 858.64 1.449 1.378 0.319
0.0005 0.537 859.11 1.153 4.311 1.000

Table 5
Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates hm = 2mm

Zm (m) �k0 ±xd Wmax (mm) ts (s) tn

0.0095 20.335 1517.54 0.644 0.117 0.057
0.0085 18.191 1546.49 0.634 0.129 0.063
0.0075 16.049 1588.18 0.619 0.144 0.070
0.0065 13.906 1631.74 0.603 0.165 0.081
0.0055 11.766 1639.97 0.601 0.192 0.093
0.0045 9.625 1686.26 0.583 0.230 0.112
0.0035 7.486 1709.38 0.575 0.295 0.143
0.0025 5.346 1724.01 0.570 0.402 0.195
0.0015 3.208 1712.36 0.576 0.675 0.328
0.0005 1.069 1720.58 0.575 2.058 1.000

Table 6
Suppression time ratio for various locations of magnetostrictive layers in FGM1 laminates hm = 3mm

Zm (m) �k0 ±xd Wmax (mm) ts (s) tn

0.0095 30.285 2254.90 0.398 0.080 0.057
0.0085 27.086 2327.05 0.389 0.088 0.062
0.0075 23.891 2380.03 0.385 0.095 0.067
0.0065 20.699 2432.79 0.381 0.105 0.074
0.0055 17.509 2479.42 0.378 0.131 0.093
0.0045 14.323 2507.17 0.376 0.149 0.105
0.0035 11.138 2545.09 0.373 0.186 0.132
0.0025 7.954 2557.24 0.375 0.273 0.193
0.0015 4.773 2572.12 0.379 0.471 0.333
0.0005 1.591 2580.25 0.383 1.413 1.000
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indicating faster vibration suppression. This is due to the larger bending moment created by actuating force
in the magnetostrictive layers. Further, it is observed that the damping parameter B31 and associated nor-
malized value of Bn increases as the magnetostrictive layers are moved away from the neutral plane. These
damping parameters are listed in Tables 2 and 3. These results agree qualitatively with the results presented
in Pradhan et al. (2001) and He et al. (2002).



Table 7
Suppression time ratio for two different control gains and various locations of magnetostrictive layers in FGM1 laminates hm = 5mm

Zm (m) C(t)rc = 104 C(t)rc = 103

�k0 ±xd Wmax (mm) ts (s) tn �k0 ±xd Wmax (mm) ts (s) tn

0.0475 49.367 3707.84 0.252 0.049 0.051 4.936 3708.17 0.262 0.495 0.051
0.0425 44.121 3826.31 0.240 0.057 0.059 4.412 3826.56 0.253 0.570 0.059
0.0375 38.893 3922.18 0.235 0.064 0.067 3.889 3922.37 0.252 0.645 0.067
0.0325 33.680 4004.38 0.230 0.068 0.071 3.368 4004.52 0.245 0.680 0.071
0.0275 28.477 4072.82 0.222 0.086 0.090 2.847 4072.91 0.241 0.861 0.090
0.0225 23.285 4133.77 0.211 0.101 0.105 2.328 4133.84 0.236 1.011 0.105
0.0175 18.102 4180.22 0.205 0.129 0.135 1.810 4180.25 0.219 1.292 0.135
0.0125 12.926 4211.51 0.203 0.181 0.189 1.292 4211.53 0.217 1.813 0.189
0.0075 7.753 4234.36 0.201 0.112 0.325 0.775 4234.37 0.229 3.122 0.325
0.0025 2.584 4248.35 0.220 0.959 1.000 0.258 4248.35 0.233 9.594 1.000

S.C. Pradhan / International Journal of Solids and Structures 42 (2005) 2465–2488 2483
4.2. Effect of thickness of magnetostrictive layers

Vibration response of FGM1 shell for various thicknesses of the magnetostrictive layers (hm) are studied.
Magnetostrictive damping coefficients and natural frequencies for various thicknesses of magnetostrictive
layers are listed in Tables 4–7. These damping coefficients and natural frequencies refer to the first mode of
vibration. Vibration suppression time for hm equals to 1mm, 2mm, 3mm and 5mm are listed in Tables 4–7,
respectively. These computations are carried out for various locations (Zm) of the magnetostrictive layers
and listed in Tables 4–7. The vibration suppression time (ts) versus the distance of magnetostrictive layers
from the neutral plane (Zm) for various thicknesses of magnetostrictive layers (hm) are plotted in Fig. 5.
This includes magnetostrictive layers of thicknesses (hm) of 1mm, 2mm and 3mm at various locations.
From Fig. 5 one can observe that 1mm thick magnetostrictive layer exhibits better attenuation as compared
to 2mm and 3mm thick magetostrictive layers.

Therefore, relatively thinner magnetostrictive layer leads to better attenuation characteristics. These re-
sults presented here agree qualitatively with the results presented in Pradhan et al. (2001) and He et al.
(2002).
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Fig. 5. Vibration suppression time ts for various thicknesses of magnetostrictive layers (hm).
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4.3. Effect of vibration modes

Effect of higher modes of vibration on the vibration suppression time is studied for the FGM1 shell.
Transverse deflection versus time for various cases of the FGM shells are plotted in Figs. 6–8. Fig. 6a–d
show the transient response of modes 1, 3, 5 and 7, respectively. It is observed that attenuation favours
the higher modes. This is clearly seen in Fig. 7a and b, where modes 1 and 2 are compared for FGM1
and FGM2 shells. These figures indicate that mode 2 attenuates at a significantly faster rate as compared
to mode 1. Present results in Fig. 6a–d also show that the vibration suppression time decreases very rapidly
as vibration mode number increases. These vibration results for various modes agree qualitatively with the
results presented in Pradhan et al. (2001).

4.4. Effect of intensity of control gain

Vibration suppression time (ts) for the intensity of control gain C(t)rc values of 1000 and 10,000 are com-
puted and the results are listed in Table 7. This shows that increase of intensity of control gain results in
proportional increase in vibration suppression time. From the results listed in Table 7, it is interesting to
note that the suppression time ratio (ts) is directly proportional to the control gain of the applied magnetic
field. Further, it is observed that the normalized suppression time ratio (tn) is independent of the intensity of
control gain. These results agree qualitatively with the results presented in Pradhan et al. (2001).

4.5. Effect of material properties of FGM shell

Effect of material properties of the FGM shell on the vibration suppression time is studied. Fig. 8
displays the vibration suppression for FGM1 (Stainless Steel–Nickel) and FGM2 (Nickel–Aluminum
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Fig. 6. Vibration suppression of higher modes at the midpoint of the FGM1 shell: (a) n = 1, (b) n = 3, (c) n = 5 and (d) n = 7.
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Fig. 7. Comparison of controlled motion at the midpoint of the (a) FGM1 and (b) FGM2 shells for vibration modes n = 1 and n = 2.
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Oxide) shells. For this comparison study Zm is assumed to be 9.5mm. From Fig. 8, it is observed that
FGM1 shell has lower frequency compared to the FGM2 shell. This confirms that the FGM1 shell has
lower flexural rigidity and thus a lower frequency compared to the FGM2 shell. These results agree qual-
itatively with the results presented in Pradhan et al. (2001).
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5. Conclusions

A theoretical formulation for a FGM shell with embedded magnetostrictive layers has been presented.
The analytical solutions for the case of simply supported boundary conditions has been derived, and
numerical results are presented. The formulation is based on the first-order shear deformation shell theory
(FSDT), and the analytical solution for the simply supported shell is based on the Navier solution ap-
proach. The effects of the material properties of the FGM shell, thickness of magnetostrictive layers and
location of the magnetostrictive layers on the vibration suppression time have been examined in detail.
It was found that attenuation effects were better if the magnetostrictive layers were placed farther away
from the neutral plane. Attenuation effects were also better when the magnetostrictive layers were relatively
thinner. Further, suppression time ratio was directly proportional to the control gain of the applied
magnetic field.
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Appendix A
S11 ¼ A11a
2 þ A66b

2 þ C2
0D66b

2 þ KSA55

1

R2
1

þ 2C0B66b
2

S12 ¼ A12ab þ A66ab � C2
0D66ab

S13 ¼ �A11a
1

R1

� A12a
1

R2

� KSA55a
1

R1

S14 ¼ B11a
2 þ B66b

2 þ C0b
2D66 � KSA55

1

R1

S15 ¼ B12ab þ B66ab þ C0D66ab

C13 ¼ A31a; C11 ¼ C12 ¼ C14 ¼ C15 ¼ 0

M11 ¼ I1 þ
2I2
R1

� �
; M14 ¼ I1 þ

I3
R1

� �
; M12 ¼ M13 ¼ M15 ¼ 0

S22 ¼ A66a
2 þ C2

0a
2D66 þ b2A22 þ

A44

R2
2

� 2C0a
2B66

S23 ¼ �A12

R1

b � A22

R2

b � KS

A44

R2

b

S24 ¼ B66ab � C0D66ab þ B12ab

S25 ¼ B66a
2 � C0D66a

2 þ B22b
2 � KS

A44

R2
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C23 ¼ A32b; C21 ¼ C22 ¼ C24 ¼ C25 ¼ 0

M22 ¼ I1 þ
2I2
R2

� �
; M25 ¼ I1 þ

I3
R2

� �
; M21 ¼ M23 ¼ M24 ¼ 0

S33 ¼ KSA55a
2 þ KSA44b

2 þ A11

R2
1

þ 2A12

R1R2

þ A22

R2
2

S34 ¼ �B11a
R1

� B12a
R2

þ KSA55a

S35 ¼ �B12b
R1

� B22b
R2

þ KSA44b

C33 ¼
A32

R2

þA31

R1

; C31;C32;C34;C35 ¼ 0

M33 ¼ I1; M31;M32 ¼ M34 ¼ M35 ¼ 0

S44 ¼ D11a
2 þ D66b

2 þ KSA55

S45 ¼ D12ab þ D66ab

C43 ¼ B31a; C41 ¼ C42 ¼ C44 ¼ C45 ¼ 0

M44 ¼ I2; M41 ¼ M14; M42 ¼ M43 ¼ M45 ¼ 0

S55 ¼ D66a
2 þ D22b

2 þ KSA44

C53 ¼ B32b; C51;C52;C54;C55 ¼ 0

M55 ¼ I2; M52 ¼ M25; M51 ¼ M53 ¼ M54 ¼ 0
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